|
A atmosfera é uma fina camada que envolve alguns planetas, composta basicamente por gases e poeira, retidos pela ação da força da gravidade. DefiniçãoPodemos definir a atmosfera como sendo uma fina camada de gases sem cheiro, sem cor e sem gosto, presa à Terra pela força da gravidade. Visto do espaço, o planeta Terra aparece como uma esfera de coloração azul brilhante. Esse efeito cromático é produzido pela dispersão da luz solar sobre a atmosfera, que também existe em outros planetas do sistema solar que também possuem atmosfera
Atmosfera vista em torno de 110 km de altitude Atmosfera terrestreComposiçãoSegundo Barry e Chorley, 1976 , a composição da atmosfera e sua estrutura vertical possibilitaram o desenvolvimento da vida no planeta. Esta é sua composição, quando seca e abaixo de 25 km é: Nitrogênio(Br) ou Azoto(PT) (N2) 78,08 %, atua como suporte dos demais componentes, de vital importância para os seres vivos, fixado no solo pela ação de bactérias e outros microrganismos, é absorvido pelas plantas, na forma de proteínas vegetais; Oxigênio (O2) 20,94 % do volume da atmosfera, sua estrutura molecular varia conforme a altitude em relação ao solo, é responsável pelos processos respiratórios dos seres vivos; Argônio 0,93 %; Dióxido de carbono (CO2) (variável) 0,035 %; Hélio (He) 0,0018 %; Ozônio(BR) ou Ozono(PT) (O3) 0,00006 %; Hidrogênio (BR) Hidrogénio (Pt) (H2) 0,00005 %; Criptônio(BR) ou Kripton(PT) (Kr) indícios; Metano (CH4) indícios; Xenônio(BR) ou Xénon(PT)(Xe) Indícios; Radônio(BR) ou Radão(PT) (Rn) indícios. O vapor d'águaO vapor d'água em suspensão no ar encontra-se principalmente nas camadas baixas da atmosfera (75% abaixo de quatro mil metros de altura) e exerce o importante papel de regulador da ação do Sol sobre a superfície terrestre, sua quantidade de vapor varia muito em função das condições climáticas das diferentes regiões do planeta, os níveis de evaporação e precipitação são compensados até chegar a um equilíbrio, pois, as camadas inferiores estão muito próximas ao ponto crítico em que a água passa do estado líquido ao gasoso. O ar, em algumas áreas pode estar praticamente isento de vapor, enquanto em outras pode chegar a conter uma saturação de até 4%, tornando-se compreensível que quase toda a água existente no planeta está nos oceanos, pois as temperaturas da alta-atmosfera são baixas demais para que o vapor possa manter-se no estado gasoso. Além de vapor d'água, as proporções relativas dos gases se mantêm constantes até uma altitude aproximada de 60 km. A atmosfera nos protege, e, à vida no planeta Terra, absorvendo radiação solar ultravioleta e variações extremas de temperaturas entre o dia e a noite. Limite entre Atmosfera e Espaço exteriorNão existe um limite definido entre o espaço exterior e a atmosfera, presume-se que esta tenha cerca de mil quilômetros de espessura, 99% da densidade está concentrada nas camadas mais inferiores, cerca 75% está numa faixa de 11 km da superfície, à medida em que se vai subindo, o ar vai se tornando cada vez mais rarefeito perdendo sua homogeneidade e composição. Na exosfera, zona em que foi arbitrado limítrofe entre a atmosfera e o espaço interplanetário, algumas moléculas de gás acabam escapando à ação do campo gravitacional.
A atmosfera do planeta terra é fundamental para toda uma série de fenômenos que se processam em sua superfície, como os deslocamentos de massas de ar e os ventos, as precipitações meteorológicas e as mudanças do clima. O limite onde efeitos atmosféricos ficam notáveis durante re-entrada, é em torno de 400.000 pés (75 milhas ou 120 quilômetros). A altitude de 100 quilômetros ou 62 milhas também é usada freqüentemente como o limite entre atmosfera e espaço. Temperatura e as camadas atmosféricas
Camadas da atmosfera, simplificadamente. A temperatura da atmosfera da Terra varia entre camadas em altitudes diferentes, portanto, a relação matemática entre temperatura e altitude também varia, sendo uma das bases da classificação das diferentes camadas da atmosfera. A atmosfera está estruturada em três camadas relativamente quentes, separadas por duas camadas relativamente frias. Os contatos entre essas camadas são áreas de descontinuidade, e recebem o sufixo "pausa", após o nome da camada subjacente. Camadas e áreas de descontinuidadeAs camadas atmosféricas são distintas e separadas entre si por áreas fronteiriças de descontinuidade. Troposfera (0 - 7/17 km)A Troposfera é a camada atmosférica que se estende da superfície da Terra até a base da estratosfera. (0 - 7/17 km), a temperatura diminui com a altitude, esta camada responde por oitenta por cento do peso atmosférico, sua espessura média é de aproximadamente 12km, atingindo até 17km nos trópicos e reduzindo-se para em torno de sete quilômetros nos pólos. TropopausaA tropopausa é o nome dado à camada intermediária entre a troposfera e a estratosfera, situada a uma altura média em torno de 17km no equador. A distância da Tropopausa em relação ao solo varia conforme as condições climáticas da troposfera, da temperatura do ar, a latitude entre outros fatores. Se existe na troposfera uma agitação climática com muitas correntes de convecção, a tropopausa tende a subir. Isto se deve por causa do aumento do volume do ar na troposfera, este aumentando, aquela aumentará, por conseqüência, empurrará a tropopausa para cima. Ao subir a tropopausa esfria, pois o ar acima dela está mais frio. Estratosfera (15-50 km)Na estratosfera a temperatura aumenta com a altitude e se caracteriza pelos movimentos de ar em sentido horizontal, fica situada entre 7 e 17 até 50 km de altitude aproximadamente, sendo a segunda camada da atmosfera , compreendida entre a troposfera e a mesosfera, a temperatura aumenta à medida que aumenta a altura. Apresenta pequena concentração de vapor d'água e temperatura constante até a região limítrofe, denominada estratopausa. EstratopausaÉ próximo à estratopausa que a maior parte do ozônio da atmosfera situa-se. Isto é em torno de 22 quilômetros acima da superfície, na parte superior da estratosfera. Mesosfera (50 - 80/85 km)Na mesosfera a temperatura diminui com a altitude, esta é a camada atmosférica onde há uma substancial queda de temperatura chegando até a -90º C em seu topo, está situada entre a estratopausa em sua parte inferior e mesopausa em sua parte superior, entre 50 a 85 km de altitude. É na mesosfera que ocorre o fenômeno da aeroluminescência das emissões da hidroxila. MesopausaA mesopausa é a região da atmosfera que determina o limite entre uma atmosfera com massa molecular constante de outra onde predomina a difusão molecular. Termosfera (80/85 - 640+ km)Na termosfera a temperatura aumenta com a altitude e está localizada acima da mesopausa, sua temperatura aumenta com a altitude rápida e monotonicamente até onde a densidade das moléculas é tão pequena e se movem em trajetórias aleatórias tal, que raramente se chocam. Regiões atmosféricas segundo a distribuição iônicaAlém das camadas, e em conjunto com estas, existem as regiões atmosféricas, nestas ocorrem diversos fenômenos físicos e químicos. IonosferaIonosfera é a região que contém íons: compreendendo da mesosfera até termosfera que vai até aproximadamente 550 km de altitude. As camadas ou regiôes iônicas da ionosfera são:
ExosferaA Exosfera fica acima da ionosfera onde a atmosfera na divisa com o espaço exterior. OzonosferaA Ozonosfera é onde fica a camada de ozônio, de aproximadamente 10 a 50 km de altitude onde ozônio da estratosfera é abundante. Note que até mesmo dentro desta região, ozônio é um componente raro. É esta camada que protege os seres vivos da Terra contra a ação dos raios ultra-violeta. MagnetosferaA Magnetosfera de um astro é a região definida pela interação do plasma estelar magnetizado com a atmosfera magnetizada desse astro em que os processos eletrodinâmicos são basicamente comandados pelo campo magnético intrínseco do astro. Sua morfologia, em uma visão simples, pode ser vista como uma bolha comprimida na parte frontal ao fluxo estelar incidente no astro e distendida no sentido do afastamento desse fluxo. Como ilustração, a magnetosfera terrestre apresenta a parte frontal a aproximadamente 10 raios terrestres, uma espessura de 30-50 raios terrestres e uma cauda que se alonga a mais de 100 raios terrestres. Mesmo um astro sem campo magnético pode apresentar uma magnetosfera induzida, que é conseqüência das correntes elétricas sustentadas pela ionosfera existente. Cinturão de radiaçãoCinturões de radiação ou cinturões de Van Allen- são regiões quase-toroidais em torno do equador magnético, a distância de 2 a 6 raios terrestres, preenchidas de partículas energéticas mas de baixa densidade volumétrica. Há um cinturão externo, produzido por partículas do plasma solar e terrestre que se aproximam da Terra ao longo desse equador, e um cinturão interno, produzido pela incidência de partículas de mais alta energia dos raios cósmicos. Populando essas regiões, os prótons e os elétrons apresentam-se com distribuições características distintas. Temperatura média e pressão
Densidade e massa
A Evolução da atmosfera da TerraPodemos compreender razoavelmente a história da atmosfera da Terra até há um bilhão anos atrás. Regredindo no tempo, podemos somente especular, pois, é uma área ainda em constante pesquisa.
Primeira AtmosferaA primeira atmosfera, era principalmente hélio e hidrogênio. O calor provindo da crosta terrestre ainda em forma de plasma, e o sol a dissiparam. Segunda atmosferaA aproximadamente 3.5 bilhões anos atrás, a superfície do planeta tinha esfriado o suficiente para formar uma crosta endurecida, povoando-a com vulcões que liberaram vapor de água, dióxido de carbono, e amoníaco. Desta forma, surgiu a "segunda atmosfera", que era formada principalmente de dióxido de carbono e vapor de água, amônia, metano, óxido de enxofre. Nesta segunda atmosfera quase não havia oxigênio livre, era aproximadamente 100 vezes mais densa do que a atmosfera atual. Acredita-se que o efeito estufa, causado por altos níveis de dióxido de carbono, impediu a Terra de congelar. Durante os próximos bilhões anos, devido ao resfriamento, o vapor de água condensou para precipitar chuva e formar oceanos, que começaram a dissolver o dióxido de carbono. Seriam absorvidos 50% do dióxido de carbono nos oceanos. Surgiram organismos Fotossíntese que evoluiriam e começaram a converter dióxido de carbono em oxigênio. Ao passar do tempo, o carbono em excesso foi fixado em combustíveis fósseis, pedras sedimentares (notavelmente pedra calcária), e conchas animais. Estando o oxigênio livre na atmosfera reagindo com o amoníaco, foi liberado azoto, simultaneamente as bactérias também iniciaram a conversão do amoníaco em azoto. Aumentando a população vegetal, os níveis de oxigênio cresceram significativamente (enquanto níveis de dióxido de carbono diminuíram). No princípio o oxigênio combinou com vários elementos (como ferro), mas eventualmente acumulou na atmosfera resultando em extinções em massa e evolução. Terceira atmosferaCom o aparecimento de uma camada de ozônio(O3), a Ozonosfera, as formas de vida no planeta foram melhor protegidas da radiação ultravioleta. Esta atmosfera de oxigênio - azoto é a terceira atmosfera Esta última, tem uma estrutura complexa que age como reguladora da temperatura e umidade da superfície A auto regulação da temperatura e pressão
Exemplo de Mapeamento da temperatura da superfície da Terra
A Terra tem um sistema de compensações de temperatura, pressão e umidade, que mantém um equilíbrio dinâmico natural, em todas as suas regiões. As camadas superiores do planeta refletem em torno de quarenta por cento da radiação solar. Destes, aproximadamente 17% são absorvidos pelas camadas inferiores sendo que o ozônio interage e absorve os raios ultraviloeta. o dióxido de carbono e o vapor d'água absorvem os raios infravermelhos. Restam 43% da energia, esta alcança a superfície do planeta. Que por sua vez reflete dez por cento das radiações solares de volta. Além dos efeitos descritos, existe ainda a influência do vapor d'água e sua concentração variável. Estes, juntamente com a inclinação dos raios solares em função da latitude, agem de forma decisiva na penetrância da energia solar, que por sua vez tem aproximadamente 33% da energia absorvida por toda a superfície atingida durante o dia, sendo uma parte muito pequena desta re-irradiada durante a noite. Além de todos os efeitos relatados anteriormente, existe ainda a influência e interação dos oceanos com a atmosfera em sua auto regulação. Estes mantém um equilíbrio dinâmico entre os fenômenos climáticos das diferentes regiões da Terra. Todos os mecanismos relatados acima atuando em conjunto, geram uma transição suave de temperaturas em todo o planeta.
Na baixa atmosfera, o ar se desloca tanto no sentido horizontal gerando os ventos, quanto no vertical, alterando a pressão. Pois, por diferenças de temperatura, a massa aérea aquecida sobe, e ao esfriar-se, desce e novamente, gerando assim um sistema oscilatório de variação de pressão atmosférica. Uma das maiores determinantes na distribuição do calor e umidade na atmosfera é a circulação do ar, pois esta ativa a evaporação média, dispersa as massas de ar quente ou frio conforme a região e o momento. Por conseqüência caracteriza os tipos climáticos. À esta circulação de ar, quando na horizontal, chama-se vento, que é definido como o movimento do ar paralelo à superfície da Terra. Quando o deslocamento é na vertical, denomina-se corrente de ar. Aos movimentos verticais e horizontais de superfície, somam-se os jet streams, e os deslocamentos de massas de ar, que determinam as condições climáticas do planeta.
Fonte: Wikipédia |
|